DFT-D3 Study of Molecular N2 and H2 Activation on Co3Mo3N Surfaces

نویسندگان

  • Justin S. J. Hargreaves
  • Richard A. Catlow
چکیده

Cobalt molybdenum nitride (Co3Mo3N) is one of the most active catalysts for ammonia synthesis, although the atomistic details of the reaction mechanism are currently unknown. We present a dispersioncorrected (D3) DFT study of the adsorption and activation of molecular nitrogen and hydrogen on Co3Mo3N-(111) surfaces to identify possible activation sites for ammonia synthesis. H2 was found to adsorb both molecularly on the Mo3N framework and dissociatively on Co8 clusters or Mo3 clusters that were exposed due to N-vacancies. We find that there are two possible activation sites for N2 where both N2 and H2 can coadsorb. The first is a Mo3 triangular cluster that resides at 3f nitrogen vacancies, and the second is a surface cavity where N2 is activated by a Co8 cluster, the second being a more efficient activation site. N2 was found to adsorb in three adsorption configurations: side-on, end-on, and an unusual tilt end-on (155°) configuration, and the existence of these three adsorption configurations is explained via MP2 calculations and the sphere-in-contact model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Computational Study of the Heterogeneous Synthesis of Hydrazine on Co3Mo3N

NNH2, can also readily form on Co3Mo3N surfaces via the Eley–Rideal chemisorption of H2 on a pre-adsorbed N2 at nitrogen vacancies. Based on this intermediate a new heterogeneous mechanism for hydrazine synthesis is studied. The highest relative barrier for this heterogeneous catalysed process is 213 kJ/mol for Co3Mo3N containing nitrogen vacancies, clearly pointing towards a low-energy process...

متن کامل

DFT-D3 study of H2 and N2 chemisorption over cobalt promoted Ta3N5-(100), (010) and (001) surfaces.

The reactants for ammonia synthesis have been studied, employing density functional theory (DFT), with respect to their adsorption on tantalum nitride surfaces. The adsorption of nitrogen was found to be mostly molecular and non-activated with side-on, end-on and tilt configurations. At bridging nitrogen sites (Ta-N-Ta) it results in an azide functional group formation with a formation energy o...

متن کامل

Nitrogen Activation in a Mars−van Krevelen Mechanism for Ammonia Synthesis on Co3Mo3N

Co3Mo3N is one of the most active catalysts for ammonia synthesis; however, little is known about the atomistic details of N2 adsorption and activation. Here we examine whether N2 can adsorb and activate at nitrogen surface vacancies. We have identified the most favorable sites for surface nitrogen vacancy formation and have calculated vacancy formation free energies (and concentrations) taking...

متن کامل

DFT Investigations for sensing capability of a single-walled Carbon nanotube for adsorptions H2, N2, O2 and CO molecules

Single-walled carbon nanotubes (SWCNTs) have a great deal of attention due to their unique properties. These properties of SWCNTs can be used in various devices such as nanosensors. SWCNTs nanosensors have fast response time and high sensitivity to special gas molecules which is very favorable for important applications. Recently, gas adsorption over outer surface of SWCNTs nanosensors was argu...

متن کامل

DFT Investigations for sensing capability of a single-walled Carbon nanotube for adsorptions H2, N2, O2 and CO molecules

Single-walled carbon nanotubes (SWCNTs) have a great deal of attention due to their unique properties. These properties of SWCNTs can be used in various devices such as nanosensors. SWCNTs nanosensors have fast response time and high sensitivity to special gas molecules which is very favorable for important applications. Recently, gas adsorption over outer surface of SWCNTs nanosensors was argu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016